Residential Night Ventilation
Cooling
Residential Stakeholder Meeting

California Statewide Utility Codes and Standards Program

Marc Hoeschele
Davis Energy Group, Inc.
Buehler Alumni Center, UC Davis
May 13, 2011
Residential Night Ventilation Cooling

Overview

- Summary of current code requirements
- Typical practice
- Summary of code change proposals
- Data/findings
- Analysis
- Issues to be resolved
- Questions
Residential Night Ventilation Cooling

Current Code Requirements

- Title 24 does not recognize ventilation cooling
 - Current ACM modeling rules do not reflect any benefit for nighttime ventilation cooling
- Title 20 requires whole house fans be listed for airflow and cfm/Watt
Residential Night Ventilation Cooling

Current Code Requirements - CEC Listing

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Brand Name</th>
<th>Model Number</th>
<th>Fan Type</th>
<th>Air Flow CFM</th>
<th>Air Flow Efficiency (CFM/Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Vent, Inc.</td>
<td>Grainger</td>
<td>WH302BD-HDX</td>
<td>Belt-Drive Single Whole House Fan</td>
<td>5381</td>
<td>11.622</td>
</tr>
<tr>
<td>Air Vent, Inc.</td>
<td>Grainger</td>
<td>WH362BD</td>
<td>Belt-Drive Single Whole House Fan</td>
<td>7438</td>
<td>14.103</td>
</tr>
<tr>
<td>Air Vent, Inc.</td>
<td>Grainger</td>
<td>WH362BD-HDX</td>
<td>Belt-Drive Single Whole House Fan</td>
<td>7881</td>
<td>13.424</td>
</tr>
<tr>
<td>LL Building Products, Inc.</td>
<td>Masterflow</td>
<td>30BWHFS</td>
<td>Belt-Drive Single Whole House Fan</td>
<td>3852</td>
<td>8.979</td>
</tr>
<tr>
<td>Marley Engineered Products</td>
<td>Marley Engineered Products</td>
<td>2438</td>
<td>Belt-Drive Single Whole House Fan</td>
<td>4430</td>
<td>7.433</td>
</tr>
<tr>
<td>Marley Engineered Products</td>
<td>Marley Engineered Products</td>
<td>3038R</td>
<td>Belt-Drive Single Whole House Fan</td>
<td>6097</td>
<td>9.946</td>
</tr>
</tbody>
</table>
Typical Practice

- Windows
 - Operable windows provide limited night cooling.
 - LBNL 2006 mail survey: 20% never open windows at night; 50% hardly open windows
 - Closed interior doors and first floor windows (security) significantly reduces any benefit
Residential Night Ventilation Cooling

Typical Practice

● **Whole House Fans**
 ● Rare in new construction; more common as a retrofit item (~6% PG&E saturation)
 ● Very efficient, but….
 ● Manual control, open/close windows
 ● Dust, noise, allergens, security, infiltration, thermal short to attic,…
 ● Noise means some people use just as a “flush” device– evenings after it cools off, first thing in the AM. Does not pre-cool building mass
Residential Night Ventilation Cooling

Typical Practice
Residential Night Ventilation Cooling

Typical Practice

- **Integrated Central Fan Systems**
 - Characterize generally as fixed speed (aka SmartVent) and variable speed (aka NightBreeze)
 - Key Advantages - Fully automated operation in response to outdoor temperature & ventilation setpoint; security; filtered air
 - Disadvantages - More expensive, less efficient in terms of Watts/cfm
Residential Night Ventilation Cooling

Typical Practice

- Supply Air
- HEAT/COOL COILS
- Blower
- RETURN Air
- Filter
- Damper
- Outside Air Intake
- Relief Air
- Attic Vent Exhaust
Central Fan System Components

- **Common Features**
 - Damper box
 - Outdoor air duct with air filter
 - Outdoor temperature sensor

- **Differences**
 - Ability to vary fan speed
 - Control strategy
Residential Night Ventilation Cooling

Code Change Proposals

- Develop Compliance Option for three system types
 - WHFs
 - Fixed speed central fan system
 - Variable speed central fan system
Residential Night Ventilation Cooling

Data/Findings

- WHFs largely installed as a retrofit product
- NightBreeze developed with CIEE and PIER funding (several 100 units installed since ~2003)
 - Monitored under Building America
- SmartVent introduced mid ‘90’s; more than 20,000 systems installed
Residential Night Ventilation Cooling

Data/Findings

- PG&E monitored six units (3 SV, 3 NB) near Sacramento in 2007 (Matrix)
 - New (2005/2006) homes (2400-3150 ft²)
 - 10% average duct leakage
 - Avg 22 days baseline, 43 days vent cooling
- Projected annual savings vs. 17 SEER AC
 - 48-50% reduction in Noon to 6 PM kWh
 - Annual energy savings: -16% SV, 2% NB
 - Savings for days >92F: 14% SV, 30% NB
Average Demand for Days with 100-105F Peak Outdoor T
Residential Night Ventilation Cooling

Analysis - CSE Model Development

- Wilcox team revamped ACM model
 - Improved thermal modeling
 - Reduced natural ventilation impacts
 - More reasonable “floating” performance

- Whole house fans
 - Fixed airflow, W/cfm, and target temperature

- Integrated generic vent cooling model
 - Looks for indoor-to-outdoor delta T; fixed target T
 - Fixed speed: Static cfm & W/cfm
 - Variable speed: Daily varying cfm & W/cfm
Residential Night Ventilation Cooling

Analysis - CSE Model Results CZ12

CZ 12 2,700 ft² Prototype Projected Cooling Energy Use

Annual Energy Use (kWh)

- Night Vent
- AC Fan
- AC

Base
WHF 100%
WHF 50%
WHF 20%
Fixed Default
Fixed Tested
Variable Default
Variable Tested

2,700 ft²

5/5/2011

CA Utilities 2013 Title 24 Stakeholder Meeting for Proposed Code Changes 5/5/2011
Residential Night Ventilation Cooling

Analysis- WHF Projections by CZ

![Graph showing WHF projections by CZ]

- 100% Airflow
- 50% Airflow
- 20% Airflow
- Standard Budget
Residential Night Ventilation Cooling

Analysis- “Fixed” Projections by CZ

![Graph showing annual total TDV budget projections for CZ zones.
' Tested' - 350 cfm/ton, 0.58 W/cfm
Default - 300 cfm/ton, 0.80 W/cfm
Standard Budget

CA Utilities 2013 Title 24 Stakeholder Meeting for Proposed Code Changes

5/5/2011
Residential Night Ventilation Cooling

Analysis—“Variable” Projections by CZ

![Graph showing annual total TDV budget projections for CZ1 to CZ16 by tested and default settings.]

- Tested - 350 cfm/ton, 0.58 W/cfm
- Default - 300 cfm/ton, 0.80 W/cfm
- Standard Budget
Residential Night Ventilation Cooling

Data/Findings- CSE Model Results

Cooling TDV Budget Impact (Positive value = savings)

<table>
<thead>
<tr>
<th></th>
<th>Whole House Fans</th>
<th></th>
<th>Fixed Speed</th>
<th></th>
<th>Variable Speed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20%</td>
<td>50%</td>
<td>100%</td>
<td>Default</td>
<td>Test</td>
<td>Default</td>
</tr>
<tr>
<td>CZ2</td>
<td>13%</td>
<td>43%</td>
<td>65%</td>
<td>0%</td>
<td>26%</td>
<td>49%</td>
</tr>
<tr>
<td>CZ3</td>
<td>-3%</td>
<td>19%</td>
<td>38%</td>
<td>-95%</td>
<td>-54%</td>
<td>29%</td>
</tr>
<tr>
<td>CZ4</td>
<td>15%</td>
<td>41%</td>
<td>60%</td>
<td>6%</td>
<td>27%</td>
<td>42%</td>
</tr>
<tr>
<td>CZ6</td>
<td>2%</td>
<td>30%</td>
<td>53%</td>
<td>-27%</td>
<td>-2%</td>
<td>45%</td>
</tr>
<tr>
<td>CZ7</td>
<td>-7%</td>
<td>20%</td>
<td>55%</td>
<td>-89%</td>
<td>-52%</td>
<td>18%</td>
</tr>
<tr>
<td>CZ8</td>
<td>11%</td>
<td>31%</td>
<td>53%</td>
<td>-10%</td>
<td>12%</td>
<td>38%</td>
</tr>
<tr>
<td>CZ9</td>
<td>5%</td>
<td>17%</td>
<td>31%</td>
<td>-6%</td>
<td>7%</td>
<td>18%</td>
</tr>
<tr>
<td>CZ10</td>
<td>5%</td>
<td>18%</td>
<td>33%</td>
<td>7%</td>
<td>20%</td>
<td>28%</td>
</tr>
<tr>
<td>CZ11</td>
<td>2%</td>
<td>8%</td>
<td>17%</td>
<td>2%</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td>CZ12</td>
<td>7%</td>
<td>27%</td>
<td>48%</td>
<td>14%</td>
<td>29%</td>
<td>32%</td>
</tr>
<tr>
<td>CZ13</td>
<td>2%</td>
<td>8%</td>
<td>16%</td>
<td>-2%</td>
<td>4%</td>
<td>9%</td>
</tr>
<tr>
<td>CZ14</td>
<td>1%</td>
<td>8%</td>
<td>16%</td>
<td>2%</td>
<td>8%</td>
<td>12%</td>
</tr>
<tr>
<td>CZ16</td>
<td>0%</td>
<td>15%</td>
<td>38%</td>
<td>-4%</td>
<td>9%</td>
<td>26%</td>
</tr>
<tr>
<td>CZ 2,4,8-10,12,14,16</td>
<td>8%</td>
<td>27%</td>
<td>47%</td>
<td>1%</td>
<td>19%</td>
<td>33%</td>
</tr>
</tbody>
</table>
Residential Night Ventilation Cooling

Data/Findings - CSE Model Results

Total TDV Budget Impact (Positive value = savings)

<table>
<thead>
<tr>
<th>CZ</th>
<th>Whole House Fans</th>
<th>Fixed Speed</th>
<th>Variable Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>CZ2</td>
<td>3%</td>
<td>9%</td>
<td>14%</td>
</tr>
<tr>
<td>CZ3</td>
<td>-1%</td>
<td>4%</td>
<td>7%</td>
</tr>
<tr>
<td>CZ4</td>
<td>5%</td>
<td>14%</td>
<td>21%</td>
</tr>
<tr>
<td>CZ6</td>
<td>1%</td>
<td>13%</td>
<td>23%</td>
</tr>
<tr>
<td>CZ7</td>
<td>-3%</td>
<td>9%</td>
<td>25%</td>
</tr>
<tr>
<td>CZ8</td>
<td>6%</td>
<td>18%</td>
<td>31%</td>
</tr>
<tr>
<td>CZ9</td>
<td>3%</td>
<td>11%</td>
<td>21%</td>
</tr>
<tr>
<td>CZ10</td>
<td>3%</td>
<td>12%</td>
<td>23%</td>
</tr>
<tr>
<td>CZ11</td>
<td>1%</td>
<td>6%</td>
<td>12%</td>
</tr>
<tr>
<td>CZ12</td>
<td>4%</td>
<td>15%</td>
<td>27%</td>
</tr>
<tr>
<td>CZ13</td>
<td>1%</td>
<td>6%</td>
<td>12%</td>
</tr>
<tr>
<td>CZ14</td>
<td>1%</td>
<td>5%</td>
<td>11%</td>
</tr>
<tr>
<td>CZ16</td>
<td>0%</td>
<td>6%</td>
<td>16%</td>
</tr>
<tr>
<td>CZ 2,4,8-10,12,14,16</td>
<td>4%</td>
<td>12%</td>
<td>22%</td>
</tr>
</tbody>
</table>
Residential Night Ventilation Cooling

Issues to be Resolved

● WHFs
 ● Level of credit
 ● Distinguish between lower airflow/more thermally efficient insulated units and traditional barometric WHFs

● Central Fan Systems
 ● Damper failure concerns

● Eligibility criteria for all system types
Residential Night Ventilation Cooling

QUESTIONS & COMMENTS

Marc Hoeschele
mhoesch@davisenergy.com
530-753-1100 x23